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• Measurements (Setup and results)

— Basic Absorbance 

— Wavelength Modulation 

• Conclusion

— Steps forward

Nuclear Weapon Engineering, WCI
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Persistent Surveillance  of complex systems  by embedded 

sensing: a new paradigm of aging awareness and monitoring
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Gas sensing will provide early detection of a broad range problems

(decomposing components, corrosion, failures, etc)

Gas Sensing System Requirements

• Detection of mixtures of unknown species

• High sensitivity - ppm level of detection

• High selectivity – broad range of gas molecules 

(e.g. diatomics, organics, inorganics)

• Fiber optic compatible

• Rugged, robust system (lifespan = decades)

• Minimize SWaP (size, weight, and power)
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Develop a chip scale sensor spectrometer for minimally 

invasive monitoring of targeted trace gases

Approach: Exploit maturity and developments in tunable VCSEL technology for 

broadband TDLAS (Tunable Diode Laser Absorption Spectroscopy

Application: atmospheric chemistry, combustion research, space exploration,

industrial processing and emission monitoring, and toxic gas detection

Integrated 

array
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VCSEL-based Gas Sensing of Targeted Gases: General Concept

• Absorption Spectroscopy: measuring the 

concentration of gases by the strength of their 
infrared (IR) absorption fingerprint:

I I

l l

Input Output

Idealized 

broadband source
laser Multiple absorption 

lines
One line 

at time

Molecules l (nm)

H2O 1390,1802,1854,1870,2360

CO2 789,1960,2003,2012

CO 1570, 2360

NO 1800, 2650

NO2 680

N2O 1380,1960,2260

CH4 1650, 1684,2360

NH3 1500

C2H2 1520

O2 760

• Vertical Cavity Surface-Emitting Lasers 

(VCSELs): compact, low-power

• Amplified wavelength is selected by cavity properties 

from a ~50 nm natural range

• Cavity can be tuned thermally ( ~5 nm max) or via 

MEMS (10s of nm)

• Bandgap engineering: commerical devices now exist 

w/ center wavelengths into the mid-IR (2.3 m) at room 

temperature
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Specific Approach: closed-cavity, open-path VCSELs gas 

sensing tests

• Ultimate goal: a battery of tunable devices which cover a significant 

number of targeted gases of interest, combined onto a small footprint

TDLAS (tunable diode laser absorption spectroscopy)

Collaboration to fabricate open-

cavity, MEMS-tunable

(R&D) @ 760, 1550, 2300nm

Use of commercial closed-cavity, 

current-tuned devices w/ external 

sensing path

COTS@ 760, 1392,1550, 1854, 2012nm

LLNL Darmstadt Univ./Schottky Institute

Minimize external path, e.g. 

via wavelength modulation

Integration, 

Packaging and

Multiplexing 
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Closed-cavity, open-path VCSELs gas sensing tests

Cascade Fiber  Probe
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O2 detected in ambient air (21%) with 763nm VCSEL

Quench is clearly  observable

• Signal change due to oxygen absorbance: DP/P~1%

• Absorption line is above the noise level (<0.5uW)

• Measurement of O2 concentrations > 0.5% are possible

• Scaling to open-cavity possible (~1um  gap and Q~105)

~5 pm

)exp()exp(/ 0 QLCLTTA ggeff  
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Preliminary experiments have shown wavelength modulation 

can greatly improve signal-to-noise

• At low concentrations or with weakly absorbing gases, absorption 

fingerprint is just a slight bump on the background intensity
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Wavelength modulation pulls the bump out of the 

background by making it a time-varying signal

• Modulating the laser drive current modulates the output wavelength

• The detected signal is now periodic in harmonics of the modulation 

frequency wo

• A lock-in amplifier then measures individual harmonic components 

with high signal-to-noise
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Modified measurement setup for wavelength modulation 

spectroscopy (WMS)

photo-detector

spherical 

mirror

optical path ~40 cm

(analyzed gas 

sample)

Lock-in 2ω

VCSEL driver ω )sin(0 tAII w

I0
A

VCSEL

Lock 

in

Signal reference

Photo-

detector

light

• A series of lock-in measurements have been made at the 2w
component of the photo-detector signal
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Parameter study in amplitude of current modulation; curves 

are versus Io
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Parameter study in modulation frequency; curves are versus Io
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WMS amplitude scan: automated for full range analysis 

OXYGEN. Modulation freq 1 kHz;  No T control

day

night

day

dI=15um 

HITRAN

SIGNATURE

R-branch P-branch
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WMS of CO2 in air (~400ppm): amplitude and frequency  sweep

Frequency: 1 kHz

SIGNATURE

dI=125 uA

Amplitude: 125uA HITRAN
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Signal to noise indicates drastic improvement  of  WMS 

over absorbance measurements 

Tuning current: 

0:0.002:13 mA

Amplitude: 125 uA

Frequency: 1 kHz

Wavelength 

Modulation

Absorbance
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A model has been developed that may aid optimization

• Preliminary model results do show the observed 

experimental features, and should offer guidance 

on defining what “optimal” is

Possibly better peak-to-average 

signal at 4w

Peak-to-average not linear in gas 

concentration at 2w

Features of experimental 

parameter studies captured in 

model Estimate how low absorption loss 

can be (concentration or path)
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Conclusions

• We propose tunable VCSELs in NIR TDLAS for monitoring and finger 

printing trace-gases in complex systems

• Wavelength modulation shows much improvement on direct 

absorbance and higher SNR

• It removes 1/f noise for lower frequencies

• The signal is tracked in a very narrow frequency band

• It discriminates gas absorption from signal baseline degradation (e.g. fouling)

• An analytical model and fully-automated  data collection/processing 

are used to guide and select the best conditions for  highest SNRs

• Lower detection limits can be achieved and need to be quantified to 

determine minimum path length and the path to miniaturization

• Going form 80 cm to  < 10cm path length seems feasible
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The path forward is comprised of parallel improvement of the 

devices and their usage

— Calibration of gas-mixer to perform measurements at 

other than ambient concentrations and for mixtures

— Quantify detection limits achievable with WMS of 

closed-cavity, external path VCSELs (scan and fit)

— Continue collaboration with German partners on device 

fabrication

– Prototype MEMS-tunable 1560 nm devices 

supplied by the Technical Institute in Darmstadt

We pursue both practical fabrication of MEMS-tunable, open-cavity 

devices, and optimized use of existing closed-cavity devices

Specifics:

Hangauer, Opt. Lett 2008
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Questions?
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OXYGEN WMS: Frequency sweep
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Modulation parameters

Amplitude: 15 uA

Frequency: 1kHz
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Amplitude scan
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•   Varying the current varies the total laser output power

•   Varying the current also varies the laser temperature

•   It is the varying temperature that drives the tuning of the laser center 

wavelength

Simple temperature model:

where and in steady-state

Given then:

For the spectral power of the laser, assume output at a single 

temperature-dependent wavelength, with a current-dependent 

amplitude:

Basic modeling assumptions



37

Lawrence Livermore National Laboratory

Gas Model: Assume an absorbing gas is present, with a single absorption line 

with a Lorentzian line shape; the spectral output is then modulated by a factor:

The detector integrates over wavelengths:

Normalize to Po and choose Iref such that lref=lg at T=Tref:

Note there are only 5 dimensionless model parameters, 4 of which 

can already be estimated from Mihai’s existing data

P1 P2

C

Basic modeling assumptions, continued
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•   Model params used in the following calcs:

P1 = 2

P2 = -5

C   = 1000
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Couldn’t finish the whole thing analytically, the following results are 

numerically calculated lock-in signals, i.e.:

Assumed raw signal (normalized); alpha is a model 

parameter which scales the gas absorption
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Recent Details

Gas delivery systems for concetration studies

— Delivery system (completed)

• Gas Cell (in 

progress) 


